How Robust Is the Wisdom of the Crowds?

نویسندگان

  • Noga Alon
  • Michal Feldman
  • Omer Lev
  • Moshe Tennenholtz
چکیده

We introduce the study of adversarial effects on wisdom of the crowd phenomena. In particular, we examine the ability of an adversary to influence a social network so that the majority of nodes are convinced by a falsehood, using its power to influence a certain fraction, μ < 0.5 of N experts. Can a bad restaurant make a majority of the overall network believe in the quality of that restaurant by misleading a certain share of food critics into believing its food is good, and use the influence of those experts to make a majority of the overall network to believe in the quality of that restaurant? We are interested in providing an agent, who does not necessarily know the graph structure nor who the experts are, to determine the true value of a binary property using a simple majority. We prove bounds on the social graph’s maximal degree, which ensure that with a high probability the adversary will fail (and the majority vote will coincide with the true value) when he can choose who the experts are, while each expert communicates the true value with probability p > 0.5. When we examine expander graphs as well as random graphs we prove such bounds even for stronger adversaries, who are able to pick and choose not only who the experts are, but also which ones of them would communicate the wrong values, as long as their proportion is 1− p. Furthermore, we study different propagation models and their effects on the feasibility of obtaining the true value for different adversary types.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge

The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...

متن کامل

Wised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge

The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...

متن کامل

The Wisdom of Crowds with Informative Priors

In some eyewitness situations, a group of individuals might have witnessed the same sequence of events. We consider the problem of aggregating eyewitness testimony, trying to reconstruct the true sequence of events as best as possible. We introduce a Bayesian model which incorporates individual differences in memory ability, as well as informative prior knowledge about event sequences, as measu...

متن کامل

Modeling Wisdom of Crowds Using Latent Mixture of Discriminative Experts

In many computational linguistic scenarios, training labels are subjectives making it necessary to acquire the opinions of multiple annotators/experts, which is referred to as ”wisdom of crowds”. In this paper, we propose a new approach for modeling wisdom of crowds based on the Latent Mixture of Discriminative Experts (LMDE) model that can automatically learn the prototypical patterns and hidd...

متن کامل

Public policy and the wisdom of crowds

Collective intelligence, or the wisdom of crowds, refers to a phenomenon by which, under the right conditions, groups of individuals can render highly accurate judgments. This phenomenon has long played an important role in economics, where understanding the behavior of groups is often essential to explaining economic outcomes. More recently, political scientists have shown that trends in publi...

متن کامل

Motivations for Participation in Socially Networked Collective Intelligence Systems

One of the most significant challenges facing systems of collective intelligence is how to encourage participation on the scale required to produce high quality data. This paper details ongoing work with Phrase Detectives, an online game-with-a-purpose deployed on Facebook, and investigates user motivations for participation in social network gaming where the wisdom of crowds produces useful data.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015